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summary C (L,

AI

A ide variety of energetic molecu es ha +en st ied by the

techn;ques of Fourier transform spectro iop d sie ila~er spec-

tro opy. Molecules observed include , , , , i, I

F , C"N, QnR 4. These molecules were detected by absorp-

tion or emission measurements in the infrared, visible and ultra-

violet regions of the spectrum. The antisymmetric stretching vibra-

tion of N iwas detected in absorption near 1645 e . New Fourier /-
transform eectronic emission spectra of SiC, C$ and CJ were found in

the infrared. Infrared electronic emission spectra were also recorded

for the Ryd~erg molecules He2 and XeH. Infrared vibration-rotation
i Svh_3 r,6

absorption spectra of Ci and Co were discovered in a carbon star.

Visible emission spectra of BH, BD and CCN were recorded with the

Kitt Peak Fourier transform interferometer. For CCN, ultra-cold

emission from a free radical jet expansion source was analyzed. CaBH,

and SrBH4 were made by the reaction of Ca and Sr vapors with diborane,

B2H6 , and detected by laser-induced f luorescence. 1 (2. (--

v/vL



A. INTRODUCTION

The goal of our work is the exploration of the spectroscopy of

a wide variety of energetic molecules. Many of these molecules store

considerable energy by virtue of large positive heats of formation.

To make suitable propellants these species must be stabilized so that

they can be stored and released on demand. However, the first step

is the discovery and spectroscopic characterization of these unusual

new molecules.

The principal tool in our quest for new molecules is the high-

resolution Fourier transform spectrometer. We have made extensive

use of the exceptional instrument associated with the McMath Solar

Telescope operated by the National Solar Observatory at Kitt Peak.

B. Trinitrogen, V 3

The antisymmetric stretching vibration, v3, of N3 was measured in

absorption' near 1645 cm-1 . No previous high-resolution infrared mea-

surements for this very energetic free radial are available. The spec-

trum of N3 was recorded in absorption with the unique fast flow White

cell of C. Howard of NOAA in Boulder, Colorado, with a BOMEM Fourier

transform spectrometer. The N3 radical was made by the reaction of Cl

radicals and HN3. The Cl atoms were made by discharging 0.02% Cl2 in

He while HN3 was produced by the reaction of NaN 3 with molten stearic

acid. The total pressure in the White cell was about 200 mtorr.
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Molecular constants for the 000 and 001 vibrational levels of the

ground X IHa state were determined (Table I). The vibrational frequency

of 1645 cm"1 for the antisymmetric stretch of N3 was lower than

expected by analogy with similar molecules. This gas-phase value

agrees with the recent Ar matrix value of 1658 cm"1 found by Tian,

Facelli and Michl [J. Phys. Chem. 92, 4073 (1988)).

TABLE I

Molecular Constants for the V3 Band of N3 (in cm- )

Constant 000 001

V3 -- 1644.67832(4)a

A -71.2729(18) -70.8909(18)

l06 AD -8.84(95) 2.99(94)

B 0.4314495(13) 0.4270645(13)

10 D 1.886(10) 1.885(10)

103 p 1.357(73) 1.561(72)

10 q -0.613(28) -1.392(27)

a Numbers in parentheses represent one standard deviation error

estimates in the last significant figure.

C. Silicon Carbide, Sic

Sic is a very elusive molecule. Although C2 and Si 2 are well-

known molecules, Sic escaped detection until our discovery of the

2



infrared electronic transition2 d1E - b11l near 6100 cm- 1 (Figure 1).

An energy level diagram is provided in Figure 2. In our experiment,

SiC was sputtered from a pressed composite wall hollow cathode made

from a 3:1 mixture of Cu and SiC powders. The hollow cathode was

operated at 200 mA with a slow flow of 1.5 Torr of neon gas. Sixty-

nine scans were co-added in 8.3 hours of integration with a spectrom-

eter resolution of 0.02 cm"1.

In this work the collaboration of A. D. McLean was critical be-

cause without his ab initio calculations we could not assign our spec-

trum. In fact, with our experimental ro value for the b1n state, he

was able to calibrate his calculations and predict an ro value for the

ground X3H state. This accurate prediction helped in the detection

of the microwave spectrum of SiC in space and in the laboratory by

Gottlieb, Thaddeus and co-workers [Astrophys. J. 341, L25 (1989)].

Their microwave data, in turn, have now allowed us to assign another

infrared electronic transition3, A3E - - X311, near 4600 cm"1 (Figure 2).

D. Dicarbon, C2

In the course of our discovery of the SiC molecule, A. D. McLean

pointed out to us that the B'E state of C2 was unknown (Figure 3).

This state corresponds to the newly discovered d'E+ state (Figure 2)

of the isovalent SiC molecule. This was quite surprising since C2

occurs in a wide variety of sources such as flames and C2 has been

studied for many years. Examination of two previously recorded spec-

tra of hydrocarbon discharges disclosed two new infrared electronic

3



SiC
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R(J)
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6110.0 6111.0 6112.0 cm - 1

FIGURE I

A portion of the 0-0 band of the d1Z+ - bln spectrum of SiC near

the R band head.
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FIGURE 2

The low-lying states of SiC, as predicted by the ab ini.Lo calcula-

tions of Bernath et al. (Publication #2). The d'E+ - b'11 and A3Z - X31

electronic transitions have been analyzed.
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tra of hydrocarbon discharges disclosed two new infrared electronic

transitions4 of C2: B"'* - A1II, and B'As - A11J (Figure 3).

These spectra were excited by an electrodeless microwave discharge

of hydrocarbons in a quartz tube. In one run a mixture of 2.75 Torr of

He, 0.030 Torr of CH4 and 0.040 Torr of white phosphorous vapor flowed

through the discharge tube. The phosphorous is, presumably, not

required. The emission was detected with InSb detectors and a silicon

filter in the 1800-9000 cm-1 region. Ten interferometer scans were co-

added in 70 minutes of integration with a resolution of 0.02 cm- .

The B1As and B '1Z states were the two missing low-lying bound

electronic states of C2. These two states do not connect with the

ground X1 state by one photon electric dipole selection rules. The

infrared electronic transitions BiAs - Aln. and B"'E8 - A11u are, how-

ever, quite strong (Figure 4). These new transitions should be ob-

servable in comets, stellar atmospheres, flames and in the combustion

of propellants.

In order to connect our new states to the grcund X1E+ state, we

also reanalyzed the Phillips system5 , AIR, - X'ZE. Two new vibrational

levels (v" = 5 and 6) of the X'ZE state were found, as well as a much

improved set of molecular constants.

E. Tricarbon and Pentacarbon, C3 and C5

The antisymmetric stretching mode of C3 near 2040 cm"1 is well-

known from matrix isolation spectroscopy but was only recently ob-

6



Cm-4
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00=6928 cm
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5OO= 8268 cm-4 Ballik -Ramsay
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I I

Poo= 5632 cn-'

,jx +-a

FIGURE 3

An energy level diagram of the low-lying states of C2 . The B" -

Asn. and B'a, - A1k infrared electronic transitions are described in

this report.
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served in the gas phase. We discovered6 the V3 mode of C 3 in the in-

frared spectrum of a carbon star's atmosphere (Figure 5). Our spec-

troscopic constants for C3 are provided in Table II. Hirota and co-

workers [Matsumura, Kanamori, Kawaguchi and Hirota, J. Chem. Phys. 89,

3491 (1988)) simultaneously found the laboratory spectrum of this

mode of C3.

The C3 molecule was found to have a temperature of about 40K and

was very abundant in this carbon star. Inspired by the C3 results, we

searched for and found the C5 molecule in the same source. The V3

mode of C5 was detected7 near 2169 cm-1 , close to the argon matrix

value of 2164 cm-1 [Vala, Chandrasekhar, Szczepanski, Van Zee and

Weltner, J. Chem. Phys. 90, 545 (1989)].

In collaboration with T. Amano and H. Sasada of the National Re-

search Council of Canada, we have discovered the 63Ha - a3I electronic

transition of C3 (Figure 6). This infrared electronic transition oc-

curs near 6480 cm-1. Although a long-lived, matrix-induced a3Iu - X1i

emission of C3 is known near 17000 cm-1, this work is the first gas-

phase characterization of triplet states of C3. The &3I state of C3

is a metastable energy reservoir. This triplet C3 emission occurred

in the same spectrum which contained the C2 infrared emission.

Pure carbon molecules such as C3, C5 (and C60) are in vogue as re-

search topics. These molecules may be involved in many astrophysical

processes, as well as in soot production in flames. Pure carbon mole-

cules are also attractive as advanced propellants, if they can be

stabilized.

9
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FIGURE 5

A short spectrum of the moon, the carbon star IRC+10216 and the

ratio, IRC+10216/moon. The C3 lines occur in absorption in the dusty

envelope of this star. Note that the frequency scale has not been

corrected for the earth's motion relative to the star.
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FIGURE 6

Energy level diagram of the low-lying states of C3. The discovery

of the 63in - 31, infrared transition is reported here.
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TABLE II

Spectroscopic Constants for the v3 Vibrational Mode of C3

Constant Value

(cm "1)

Y 3  2040.02113(62)a

B0, 0,0  0.430557 (37)

D0, 0,0  1.415(79)x10 6

B0,0,1  0.435654(39)

D0,0.1 3.937(88) xl06

"One standard deviation uncertainty in parentheses.

F. Rydberg Xoleoules, Be 2 and XsO

He2 and XeH are "Rydberg molecules" which have well-bound ionic

He+ and XeH+ cores and weakly held outer electrons in Rydberg orbi-

tals. By virtue of their electronic excitation, Rydberg molecules

have a very high energy content.

The Fourier transform spectrometer of the National Solar Observa-

tory at Kitt Peak was used to record infrared electronic emission

spectra of XeH and He2. For He2, 0-0 and 1-1 bands of the b3  - a z u

transition was observed near 4700 cm"i at 0.01 cm"1 resolution.8 The

spectrum of He2 was excited in a Ni hollow cathode operate( at 280mA.
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A flow of He gas at 4 torr pressure was maintained through the

cathode. The precision of our measurements was ± 0.001 cm"1 .

Our measurements on He2 fully resolve the triplet splittings of

the b311 - a3E. transition. These high-resolution observations provide

a very precise set of molecular constants for He2, including A-doub-

ling constants for the b3115 state. Interpretation of the fine struc-

ture and A-doubling constants provide some insight into the elec-

tronic structure. For example, the b3Ha state is in accidental pure

precession with the nearby c3E+ state. The observed line positions,

spectroscopic constants and other details are available in our paper

published in Molecular Physics.a

The XeH Rydberg molecule was observed with the same techniques

used for He2. Instead of He, a slow, continuous flow of 2.2 torr of

H2 and 100 mtorr of Xe was maintained through the Ni hollow cathode

tube. In our discharge an excess of hydrogen makes H+, which then

protonates Xe to make XeH . Recombination of XeH with an electron

gives rise to infrared electronic emission of XeH. The resolution

of the Fourier transform spectrometer was 0.02 cm"1.

The 0-0 vibrational bands of two new infrared electronic transi-

tions were observed: The D2E+ - C21, transition near 4420 cm'1 and the

C211 - BEZ transition near 3250 cm"' (Figure 7). A rotational analysis

provided spectroscopic constants9 for the states connected by these

transitions.

13
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CHEM. PHYS. LETT.
129, 82 119861

FIGURE 7

The low-lying states of the Rydberg molecule XeH. We have

analyzed the E 2E - D21 and D2U - B2Z + infrared electronic transitions.
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G. Boron Hydride and Deuteride, BN and BD

Boron derivatives, particularly borohydrides, are often suggested

as advanced propellants. We discovered the vibration-rotation spec-

truml0 of BH in a microwave discharge of diborane, B2H6. Although

several electronic transitions of BH are well-known, the high-resolu-

tion infrared spectrum had not been previously detected.

The vibration-rotation emission spectrum of the BH X E state was

observed with the McMath Fourier transform spectrometer at Kitt Peak.'0

The 1-0, 2-1 and 3-2 bands were observed in a microwave discharge of

1 torr of He with 0.016 torr of B2H6. Spectroscopic constants of the

individual vibrational levels and equilibrium molecular constants

were determined. An RKR potential curve was calculated from the equi-

librium constants.1°

In the course of our work with BC (see below), we accidentally

observed the AlIl - X'Z transition of BH. Addition of a small amount

of D2 then provided the corresponding electronic transition of BD

(Figure 8). Our reanalysis" resulted in much improved spectroscopic

constants for BH and BD.

H. Boron Carbide, BC

Light elements with very stable oxides such as B and C are

excellent propellants so we explored the simple binary BC system.

Our production of BC was similar to our work with SiC. A composite

wall (BC/Cu) hollow cathode discharge served as a light source for

the Kitt Peak Fourier transform spectrometer. This composite wall

15
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hollow cathode was very similar to the SiC/Cu cathode used for the

production of SiC.

A current of 400 mA was maintained through a discharge in 1.2

Torr of flowing argon gas. Two cooled GaAs photomultiplier 'tubes (RCA

31034) were used as detectors. The spectra were integrated for about

two hours with a resolution of about 0.02 cm"1.

In the initial spectra, the B4E" - X4A - transition of BC was very

weak and the first lines were not detected. Some evidence of spin-

splitting was found in the lines. We recently recorded much improved

spectra containing the 0-0, 1-1, 2-2 and 3-3 bands of the B-X transi-

tion. These spectra allow an unambiguous rotational assignment and

show evidence of the spin-splitting between the 4Z3/2 and .Z; components

(Figure 9). The preliminary molecular constants 11 are provided in

Table III.

TABLE III

Spectroscopic Constants for the 0-0 Band of the B4Z - X4E" transition

of BC (in cm"1) .

Constant B4E" X4"

To  17904.8567(14)

B0  1.369356(51) 1.311849(52)

D, x 10" 7.166(46) 7.492(45)

A0  -0.0462(33) 0.0275(32)

17
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I. Dicarbon Nitride, CCN

The ultracold emission spectrum of CCN was observed with an

Engelking-type [Engelking, Rev. Sci. Instrum. 57, 2274 (1986)] free

radical jet expansion source.12  The precursor diazoacetonitrile

HC(N2)CN was seeded in He and discharged to provide CCN. The observa-

tion" of the 000-000, 000-001, 000-002 and 000-100 vibronic bands of

the A 2 - X21 transition allowed the accurate determination of the v, =

1923.2602(74), v3 = 1050.7586(12) and 2v3 = 2094.8153(16) cm-1 vibra-

tional modes. The very precise wavenumber scale of the Fourier trans-

form spectrometer allows these infrared active vibrational modes to

be determined from an electronic emission spectrum.

J. Metal Borohydrides, CaBH, and SrBH4

Ca and Sr vapors react spontaneously with diborane (B2H6 ) to give

the CaBH4 and SrBH4 free radicals.13 The Ca or Sr metal was vaporized

from a resistively heated crucible, carried to the reaction zone with

argon carrier gas, and reacted with diborane. The diborane was held

at -130 'C with a pentane/liquid N2 bath and added as a gas to the

Broida oven. The pressures were approximately 1 Torr of argon and

0.035 Torr of diborane. We have detected the B2E - 2A, and A2A - 2A,

electronic transitions by low resolution laser-induced fluorescence.

These molecules are the first metal borohydrides to be detected in

the gas-phase.

19



K. Conclusion and Future Directions

The techniques of high-resolution laser and, particularly,

Fourier transform spectroscopy are able to characterize unusual

energetic molecules suitable as propellants. These molecules can be

made by a variety of chemical and physical processes in electrical

discharges and chemical reactors.

The performance of a propellant depends both on the reaction

endothermicity and the molecular weight of the product molecules.

Light elements are most suitable so the first row elements, Li

through Ne, as well as Mg and Al, are most suitable. Light new mole-

cules such as LiB, LiC, LiNH2, etc., are of potential interest.

The first step in this work is the discovery and spectroscopic

identification of new molecules. Ultimately these light, energetic

molecules must be synthesized efficiently and trapped in condensed

phases to make a viable propellant. The work reported here concen-

trates on the initial phase of the development of advanced propel-

lants.
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